2 research outputs found

    Structures for Sophisticated Behaviour: Feudal Hierarchies and World Models

    Get PDF
    This thesis explores structured, reward-based behaviour in artificial agents and in animals. In Part I we investigate how reinforcement learning agents can learn to cooperate. Drawing inspiration from the hierarchical organisation of human societies, we propose the framework of Feudal Multi-agent Hierarchies (FMH), in which coordination of many agents is facilitated by a manager agent. We outline the structure of FMH and demonstrate its potential for decentralised learning and control. We show that, given an adequate set of subgoals from which to choose, FMH performs, and particularly scales, substantially better than cooperative approaches that use shared rewards. We next investigate training FMH in simulation to solve a complex information gathering task. Our approach introduces a ‘Centralised Policy Actor-Critic’ (CPAC) and an alteration to the conventional multi-agent policy gradient, which allows one multi-agent system to advise the training of another. We further exploit this idea for communicating agents with shared rewards and demonstrate its efficacy. In Part II we examine how animals discover and exploit underlying statistical structure in their environments, even when such structure is difficult to learn and use. By analysing behavioural data from an extended experiment with rats, we show that such hidden structure can indeed be learned, but also that subjects suffer from imperfections in their ability to infer their current state. We account for their behaviour using a Hidden Markov Model, in which recent observations are integrated imperfectly with evidence from the past. We find that over the course of training, subjects learn to track their progress through the task more accurately, a change that our model largely attributes to the more reliable integration of past evidenc

    Correcting Experience Replay for Multi-Agent Communication

    Full text link
    We consider the problem of learning to communicate using multi-agent reinforcement learning (MARL). A common approach is to learn off-policy, using data sampled from a replay buffer. However, messages received in the past may not accurately reflect the current communication policy of each agent, and this complicates learning. We therefore introduce a 'communication correction' which accounts for the non-stationarity of observed communication induced by multi-agent learning. It works by relabelling the received message to make it likely under the communicator's current policy, and thus be a better reflection of the receiver's current environment. To account for cases in which agents are both senders and receivers, we introduce an ordered relabelling scheme. Our correction is computationally efficient and can be integrated with a range of off-policy algorithms. It substantially improves the ability of communicating MARL systems to learn across a variety of cooperative and competitive tasks
    corecore